Thermochemistry of radicals formed by hydrogen abstraction from 1-butanol, 2-methyl-1-propanol, and butanal.

نویسندگان

  • Ewa Papajak
  • Prasenjit Seal
  • Xuefei Xu
  • Donald G Truhlar
چکیده

We calculate the standard state entropy, heat capacity, enthalpy, and Gibbs free energy for 13 radicals important for the combustion chemistry of biofuels. These thermochemical quantities are calculated from recently proposed methods for calculating partition functions of complex molecules by taking into account their multiple conformational structures and torsional anharmonicity. The radicals considered in this study are those obtained by hydrogen abstraction from 1-butanol, 2-methyl-1-propanol, and butanal. Electronic structure calculations for all conformers of the radicals were carried out using both density functional theory and explicitly correlated coupled cluster theory with quasipertubative inclusion of connected triple excitations. The heat capacity and entropy results are compared with sparsely available group additivity data, and trends in enthalpy and free energy as a function of radical center are discussed for the isomeric radicals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Volatile Compounds Selection via Quantile Correlation and Composite Quantile Correlation: A Whiting Case Study

The freshness and quality indices of whiting (Merlangius merlangus) influenced by a large number of chemical volatile compounds, are here analyzed in order to select the most relevant compounds as predictors for these indices. The selection process was performed by means of recent statistical variable selection methods, namely robust model-free feature screening, based on quantile correlation a...

متن کامل

Structure and potential energy surface for Na+N2

Related Articles Interaction-induced dipoles of hydrogen molecules colliding with helium atoms: A new ab initio dipole surface for high-temperature applications JCP: BioChem. Phys. 6, 01B616 (2012) Interaction-induced dipoles of hydrogen molecules colliding with helium atoms: A new ab initio dipole surface for high-temperature applications J. Chem. Phys. 136, 044320 (2012) A theoretical study o...

متن کامل

Statistical thermodynamics of 1-butanol, 2-methyl-1-propanol, and butanal.

The purpose of the present investigation is to calculate partition functions and thermodynamic quantities, viz., entropy, enthalpy, heat capacity, and Gibbs free energies, for 1-butanol, 2-methyl-1-propanol, and butanal in the vapor phase. We employed the multi-structural (MS) anharmonicity method and electronic structure calculations including both explicitly correlated coupled cluster theory ...

متن کامل

Volatile Organic Compounds in Naturally Fermented Milk and Milk Fermented Using Yeasts, Lactic Acid Bacteria and Their Combinations As Starter Cultures

The volatile organic compounds present in 18 Zimbabwean naturally fermented milk (amasi) samples and those produced by various yeasts, lactic acid bacteria (LAB) and yeast/ LAB combinations were determined using headspace gas chromatography. The yeast strains used were: Candida kefyr 23, C. lipolytica 57, Saccharomyces cerevisiae 71, C. lusitaniae 68, C. tropicalis 78, C. lusitaniae 63, C. coll...

متن کامل

Hydrogen abstraction from n-butanol by the methyl radical: high level ab initio study of abstraction pathways and the importance of low energy rotational conformers.

Hydrogen abstraction reactions by the methyl radical from n-butanol have been investigated at the ROCBS-QB3 level of theory. Reaction energies and product geometries for the most stable conformer of n-butanol (ROH) have been computed, the reaction energies order α < γ < β < δ < OH. The preference for n-butane to favour H-abstraction at C(β) and C(γ) while, in contrast, n-butanol favours radical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 137 10  شماره 

صفحات  -

تاریخ انتشار 2012